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Abstract--This paper presents some important properties o f  the Fuzzy ART neural network algorithm introduced 
by Carpenter, Grossberg, and Rosen. The properties described in the paper are distinguished into a number o f  
categories. These include template, access, and reset properties, as well as properties related to the number of  list 
presentations needed for  weight stabilization. These properties provide numerous insights as to how Fuzzy ART 
operates. Furthermore, the effects o f  the Fuzzy ART parameters a and p on the functionality of  the algorithm are 
clearly illustrated. 
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1. INTRODUCTION 

A neural network model that can be used to cluster 
arbitrary binary or analog data was derived by Carpen- 
ter, Grossberg, and Rosen (1991b). This model is 
termed Fuzzy ART in reference to the adaptive reso- 
nance theory introduced by Grossberg (1976). One of 
the major reasons for the development of Fuzzy ART 
was to remedy the inability of ART1, as well as Pre- 
dictive ART architectures based on ART1 modules, to 
classify analog data (see, for example, Carpenter, 
Grossberg, & Reynolds, 1991a). Although the learning 
properties of ART1 and Predictive ART architectures 
based on ART1 modules are well understood (see Car- 
penter and Grossberg, 1987; Georgiopoulos, Heileman, 
& Huang, 1991, 1992, 1994; Moore, 1989), the same 
cannot be said for the Fuzzy ART algorithm. 

In this paper we present useful properties of the 
Fuzzy ART algorithm that facilitate the understanding 
of its operation. For clarity purposes we split the prop- 
erties into four different categories: template properties 
(Section 3 ), access properties (Section 4),  reset prop- 
erties (Section 5 ), and properties related to the number 
of list presentations needed for the weight stabilization 

(Section 6). These properties are presented in the form 
of theorems, propositions, and corollaries. Some of the 
properties discussed in this paper involve the size/sim- 
ilarities of templates created in Fuzzy ART, as well as 
the number of list presentations required to learn an 
arbitrary list of binary input patterns repeatedly pre- 
sented to Fuzzy ART. For most of the Fuzzy ART 
properties mentioned in this manuscript, the effects of 
parameters ot and p are clearly illustrated. 

2. P R E L I M I N A R I E S  m N O T A T I O N  

The Fuzzy ART algorithm is described in detail by Car- 
penter et al. (1991b). In this section we only provide 
information that is necessary to understand the results 
developed here. The Fuzzy ART architecture consists 
of two layers of nodes, designated F~ and F2. Inputs 
are presented at the Ft layer of Fuzzy ART. If a = (a~, 
. . . .  aM) denotes a vector, with each of its components 
in the interval [0, 1], then the input to the Ft layer of 
Fuzzy ART is a vector I such that 

I = (a ,  a c) = ( a l  . . . . .  a M ,  a~ . . . . .  a ~ )  (1)  

where 
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a~ = 1 - a l ;  1 - < i < M .  (2) 

This type of  transformation, called complement  coding, 
is necessary for the successful operation of Fuzzy ART, 
especially when the input vector I is of analog nature 
(for more details see Carpenter et al., (1991b). The F2 
layer in Fuzzy ART is usually referred to as the cate- 
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gory representation layer because its nodes denote the 
categories to which the input patterns belong. 

The Fj layer has 2M nodes, and the F2 layer has N 
nodes. We use the index i to designate nodes in the F~ 
layer, and the indexj  to designate nodes in the/72 layer. 
There are bottom-up weight connections emanating 
from the nodes in the F~ layer and converging to the 
nodes in the F2 layer. Similarly, there are top-down 
weight connections emanating from the nodes in the F2 
layer and converging to the nodes in the F~ layer. The 
bottom-up weights converging to a node in the F2 layer 
can be completely defined by the top-down weights 
emanating from this F2 node. Hence, only the set of 
top-down weights need be defined. In particular, we let 
Wj = (Wjl . . . . .  Wj(2M)) designate the vector of top- 
down weights emanating from node j in the F2 layer. 
The initial value of all top-down weights is 1. When an 
input pattern I is applied at the FI layer, it produces an 
input Tj(I) at node j in the F2 layer. For notational 
simplicity, Tj(I) is written as Tj in the rest of the paper. 
The input Tj is given by the equation 

11A Wj[ 
- ,~ + I w j - - - - - - T  " ( 3 )  

The function ~ is referred to as the choice function. In 
the above equation, a is a positive real-valued number 
called the choice parameter, I A W~ is a vector for 
which the ith component ( 1 --< i --< 2M) is equal to the 
minimum of Ii and W~i (the operator A is referred to 
as the MIN operator and I A Wj is called the MIN of 
I and W~), and l" I designates the size of a vector, 
where the size of  a vector is defined to be the sum of 
its components. The node in the F2 layer that receives 
the largest input Tj will be chosen to represent the input 
pattern I. Assume that node J in the F2 layer receives 
the largest such input. The appropriateness of node J 
to represent the input pattern I is based on the vigilance 
criterion. This criterion is satisfied if 

II A W~l 
II[ - -  p ( 4 )  

where p, the vigilance parameter, may take values in 
the interval [ 0, 1 ]. I f  node J fails the vigilance criterion, 
it is reset and a search for another node in the F2 layer 
to represent the input pattern starts. The reset of node 
J is accomplished by the orienting subsystem in Fuzzy 
ART (for more details about the orienting subsystem 
see Carpenter and Grossberg (1987).  If  node J passes 
the vigilance criterion, learning starts and the top-down 
weight vector W~ is updated as 

Wj = (1 - /3)Ws + /3(1 A Ws) (5) 

where /3 is a Fuzzy ART parameter, called learning 
rate, which may assume values in the interval (0, 1]. 
If/3 = 1 the learning is called fast learning, and if 0 < 

/3 < 1 it is called slow learning. If  a node has previously 
coded an input pattern, then it is said to be committed; 
otherwise, it is said to be uncommitted. We say that a 
node J in the F2 layer has coded an input pattern ! if, 
after the presentation of I at the F~ layer, J is eventually 
chosen and not reset, and learning of pattern I by node 
J ensues. A special type of slow learning, called fast- 
commit slow-recode, is one in which fast learning oc- 
curs (i.e.,/3 = 1 ) when the chosen node in the F2 layer 
is uncommitted, and slow learning occurs (i.e., 0 < /3 
< 1 ) when the chosen node is committed. 

The vector of top-down weights from a node in the 
F2 layer is called a template. A template corresponding 
to a committed node is called a committed template, 
and a template corresponding to an uncommitted node 
is called uncommitted template. An uncommitted tem- 
plate has all of its components equal to 1. In this paper, 
When we refer to the word " templa te"  we mean com- 
mitted template. Consider now an input pattern I pre- 
sented to the Fuzzy ART architecture, and an arbitrary 
template denoted by Wj. A component of an input pat- 
tern I is indexed by i if it affects node i in the F~ layer, 
and the corresponding component of  template Wj is 
Wji. We can identify three types of  templates with re- 
spect to an input pattern I: subset templates, superset 
templates, and mixed templates. A template Wj is a sub- 
set template of an input pattern I if each one of the Wj 
components is smaller than or equal to its correspond- 
ing components in I.  A template Wj is a superset tem- 
plate of an input pattern I if each one of the Wj com- 
ponents is larger than its corresponding components in 
I.  A template is a mixed template if some of the Wj 
components are smaller than or equal to its correspond- 
ing components in I,  and the rest of the Wj components 
are larger than its corresponding components in I.  With 
reference to an input I ,  we designate a committed node 
in the F2 layer as subset, superset, or mixed depending 
on whether its corresponding template is a subset, su- 
perset, or mixed template with respect to I.  It is worth 
noting that in the case of fast-learning or fast-commit 
slow-recode learning we can only define subset, mixed, 
and uncommitted templates. Due to the complement 
coding nature of the input patterns, superset templates 
cannot be created in a Fuzzy ART architecture with 
fast-learning or fast-commit slow-recode learning. 

The following assumptions will be used at various 
points in the remainder of the paper to guarantee the 
validity of specific results: ( i)  fast learning, (ii) fast- 
commit slow-recode learning, (iii) binary input pat- 
terns, ( iv) repeated or cyclic presentations of an input 
list of  patterns, and (v)  a sufficient number of nodes in 
the Fz layer. Assumptions (i) and (ii) have been dis- 
cussed previously. Assumption (iii) implies that the in- 
put patterns presented to the Fuzzy ART architecture 
have binary (0 or 1 ) components. Most of  the results 
in this paper are valid for analog or binary data. Only 
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the properties presented in Propositions 6 .1-6 .4  of 
Section 6 require assumption (iii). Assumption (iv) 
corresponds to the case where we have a list of input 
patterns, designated I 1 , 12 . . . . .  I p,  which is presented 
either repeatedly or cyclically to Fuzzy ART. In re- 
peated presentations of the list, the order of the pattern 
presentation within the list is of no consequence, but 
in cyclic presentations of the list the patterns are always 
presented in the same order within each list (e.g., I ~, 
I2 . . . . .  I p,  I l , 12 . . . . .  I p,  and so on).  Assumption 
(v)  means that every time an input pattern I is pre- 
sented to Fuzzy ART there is at least one uncommitted 
node available at the Fz layer; this assumption is suf- 
ficient to guarantee that an appropriate node in the F2 
layer will always be found to represent the input pat- 
tern. 

In the case where a list of input patterns is repeatedly 
presented to the Fuzzy ART architecture, it is reason- 
able to ask how many list presentations does Fuzzy 
ART need to learn the input list; or equivalently, how 
many list presentations are needed for the weights to 
stabilize. We say that the weights in the Fuzzy ART 
architecture are stabilized by the end of the nth list 
presentation, if in subsequent presentations of the list 
(i.e., list presentations -> n + 1 ) weights cannot be 
modified. Under the aforementioned scenario (i.e., re- 
peated presentations of a list of input patterns) when 
weights are stabilized we also say that learning (of  the 
list) is complete. After stabilization of the weights oc- 
curs, each pattern from the input list will have direct 
access to a node in the F2 layer (assuming there are 
enough nodes in the Fz layer). We say that a pattern I 
has direct access to a node j in the F2 layer if imme- 
diately after the presentation of I at the F l  layer, j is 
chosen first and no reset o f j  occurs. 

3. T E M P L A T E  P R O P E R T I E S  

In this section we discuss properties related to the tem- 
plates created in a Fuzzy ART architecture. In partic- 
ular, Theorem 3.1 states that the templates in Fuzzy 
ART are distinct, whereas Proposition 3.1 deals with 
the smallest possible size of the templates. Corollary 
3.1 shows how the range of a is related to the smallest 
possible template size. Proposition 3.2 focuses on the 
similarity among the templates in Fuzzy ART. Finally, 
Corollary 3.2 shows how this similarity is affected by 
the ranges of the a and p parameters. 

THEOREM 3.1. In a Fuzzy ART  architecture, all the tem- 
plates are distinct. 

Proof (By contradiction) Assume that Fuzzy ART 
creates two templates W~ and W2 that are equal (i.e., 
Wti = W2~ for all i). Assume also that Wt is created 
first, and template WE is created by pattern I as it is 
coded by node 2 with template "~¢2. Then,  

W2 = 3(I A I?¢2) + (1 -/3)W2 = W~. (6) 

Equation (6) implies that each component of W2 is 
given by 

W2i =/3 min(Ii, W21 ) + ( 1 -/3)'i~¢2i. (7) 

Based on eqn (7) it is not difficult to show [by distin- 
guishing cases such as (i) t7¢2i < Ii, (ii) "¢¢2i > Ii, and 
(iii) 17¢2i = Ii] that 

I A W , = I A W 2 .  (8) 

Let us now identify cases under which pattern I will 
be coded by node 2 with template "¢¢2 in the presence 
of node 1 with template Wl. 

Case 1. I chooses node 2 before it chooses node 1, 
and node 2 is not reset. One of the conditions for Case 
1 to happen is 

[I ^ W:I [I ^ W,[ 
+ Iw: l  -> ~ + Iw,  I ' (9) 

Equations (8) and (9) imply that ]W1] -- [~/2]. This 
is a contradiction because eqn (6)  implies [W~[ -< 
I't~2], and the assumption that Wl * W2 means that 
Iw,  I < 1~¢21. Therefore, eqn (9) can never he true, 
or equivalently, Case 1 can never happen. 

Case 2. I chooses node 1 before it chooses node 2, 
reset of node 1 occurs, I eventually chooses node 2, 
and node 2 is not reset. One of the conditions for Case 
2 to happen is 

II ^ W~l 
I I - ~ - - -  < p (10) 

Combining eqns (8) and (10) we get 

II^w:l II^W,I 
] I - - - - ~  - I I - - - - - ~  < p '  (11) 

which implies that if node 1 is reset node 2 will also 
be reset, or equivalently, that Case 2 can never happen. 

Because Cases 1 and 2 are the only two possible 
scenarios under which pattern I will create a template 
W2 equal to the already existing template WI, we con- 
clude that templates that are equal can never be created 
in Fuzzy ART. • 

REMARKS. This theorem shows one of the good prop- 
erties of Fuzzy ART: that templates can never be the 
same. It applies to binary or analog patterns, fast or 
slow learning, and for any values of the ot and p param- 
eters. In addition, because [I[ = M is not used in our 
proof, the validity of Theorem 3.1 is not dependent on 
the complement-coded nature of the input patterns. 

PROPOSITION 3.1. In a Fuzzy ART  architecture with a 
sufficient number of  nodes in the F2 layer, the size of  a 
template is larger than aM/(t~ + M) .  For the binary 
patterns and fast learning case, the size of  a template 
is larger than or equal to (a + 1 ) M / ( a  + M).  
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Proo f  Consider an input pattern I that creates a tem- 
plate of size [W[ by destroying a template of  size 
greater than I W ]. In particular, assume that I is coded 
by node j  with template W~ ld of size [W] + 6(6 > 0) ,  
and creates a template W~ eW of size ]W]. Obviously, 

W~ ew = ( 1 - /3)W~ ''d +/3(1 A W ~'~). (12) 

One of the conditions for node j to code I is 

I I A W ~ I M 
o~ + Iw°'~l (13) j a + 2 M  

It is not difficult to show, using eqn (12) ,  that HI A 
W ~ J --< ]W7 ew t, or equivalently, that I I A W ~a J = 
] W J  - e (e  --> 0).  Consequently, another way of writ- 
ing eqn (13) is 

I w l  - ~  M 
--> - -  ( 1 4 )  

,~+ Iwl  + 6  o~ + 2 M '  

which gives us 

Iwl  > ¢a + 6 + e ) M  _ + e .  ( 1 5 )  
( a  + M) 

Knowing that 6 and e can be arbitrarily small and 6 
0, we conclude 

a M  
IWl > - -  ( 1 6 )  

(a + M) " 

The second part of the proposition is obvious if I WI 
= M. For IWI - M - 1 consider eqn (15) for fast 
learning (e = 0) and binary inputs, which immediately 
implies that the smallest 6 value is equal to 1. As a 
result, eqn (15 ) becomes 

Iwl ~ (a + 1)M/(ot + M). (17) 

This proves Proposition 3.1. • 

COROLLARY 3.1. In a Fuzzy A R T  architecture with bi- 
nary patterns, fas t  learning, and a sufficient number  o f  
nodes in the F2 layer, i f  a > M ( M  - L - 1 ) /L ,  then 
the smallest possible template size is equal to M - L 
+ 1 and there are at most  L different template sizes, 
where L is an integer in the interval [1, M - 1 ]. 

Proo f  Corollary 3.1 is a direct consequence of Prop- 
osition 3.1. • 

REMARKS. Proposition 3.1 and Corollary 3.1 are valid 
independent of the value of the vigilance parameter p. 
The smallest possible template size increases as a in- 
creases. Furthermore, it is worth observing that under 
the Fuzzy ART conditions stated in Corollary 3.1, size- 
1 templates cannot be created because l/(c~ + 2) < 
M / ( a  + 2M).  

PROPOSITION 3.2. In a Fuzzy A R T  architecture with ei- 
ther fast -commit  slow-recode or fas t  learning, and a 
sufficient number  o f  nodes in the 1:2 layer, the size o f  

the MIN  o f  any two templates ( the number  o f  common 
ls between any two templates in the binary input pat- 
terns and fast  learning case) is smaller than 

a + M ' l  max{ M,M  . (18) 

Proo f  Let us consider the templates emanating from 
nodes 1 and 2 in the F2 layer of Fuzzy ART. Assume 
that the F: nodes become committed in the order 1, 2, 
• . .  Assume also that node 2 becomes committed during 
the presentation of an input pattern I ,  and at this time 
the template corresponding to node 1 is equal to W~. 
Because I is coded by node 2 in the presence of the 
template W~, one of the following two conditions must 
be valid: 

I IA W,I M 
< - -  (19) 

a + I W, I a + 2M 

or  

[ I A W I ]  
- -  < p. ( 2 0 )  

M 

The first condition gives 

M M 
II AW~I < - - ( a +  IW, I) ~ < - - ( ~  +M) .  

+ 2M a + 2M 

(21) 

And the second condition gives 

I I  A w,I  < pM. (22) 

Combining eqns (21 ) and (22) we have 

~ + M ]  
I I A W ,  I < m a x  pM, M ~ .  (23) 

At the time I is initially coded by node 2 W2 = I,  hence 
I Wl A W21 = I I A W~ I. As a result, initially I W~ A 
W2I is smaller than the right-hand side of eqn (23).  
Obviously, as learning progresses, W~ and W2 will ei- 
ther shrink or stay the same, and I Wl A W21 cannot 
increase• Consequently, the size of the MIN of the tem- 
plates emanating from nodes 1 and 2 will always be 
smaller than the maximum of pM and M [ ( a  + M ) / ( a  
+ 2M)I .  • 

COROLLARY 3,2• In a Fuzzy A R T  architecture with ei- 
ther fast -commit  slow-recode or fast  learning, and a 
sufficient number  o f  nodes in the F2 layer, i f  a <-- ( M 
- 2 L ) M / L  and p <-- 1 - L / M ,  then I Wl A W2I < M 
- L, where 0 <-- L < M/2 .  

Proof. Corollary 3.2 is a direct result of  Proposition 
3.2. • 

The consequences of  Corollaries 3.1 and 3.2 are de- 
picted in Tables 1 and 2. 
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TABLE 1 
Consequences of Corollary 3.1 for M = 10 

Max. Number of Smallest 
Range of a Template Sizes Template Size 

(0, 1.25] 9 2 
(1.25, 20/7] 8 3 
(20/7, 5] 7 4 
(5, 8] 6 5 
(8, 12.51 5 6 
(12.5, 20] 4 7 
(20, 35] 3 8 
(35, 80] 2 9 
(80, oo) 1 10 

4. ACCESS PROPERTIES 

In this section we present properties related to what 
type of nodes in the F2 layer will be chosen during a 
pattern's presentation. In particular, Proposition 4.1 
discusses the order of  search among the nodes in the 
F2 layer during a pattern's presentation. Theorem 4.1 
states that with fast learning, uncommitted nodes in the 
F2 layer will not be chosen after the first presentation 
of a list of input patterns. Theorem 4.2 states that a 
pattern will always directly access a node with a tem- 
plate equal to the pattern. Finally, Proposition 4.2 ver- 
ifies that under certain conditions, after learning of an 
input list of patterns is complete, there may exist com- 
mitted nodes in the F2 layer that are not directly ac- 
cessed by any pattern from the input list. 

In Fuzzy ART the search order among the nodes in 
the F2 layer depends on the choice parameter a.  If  c~ is 
small, a pattern tends to choose a node with the largest 
ratio ] I A W i 1/I Wj 1, regardless of  the size of  ] I A Wj 1. 
In this case, subset nodes always have priority over 
other nodes. If  a is large, the size I I A W~] plays a 
more important role in the choice of  a node in the F2 
layer. For any c~, Fuzzy ART follows the rules stated 
in Proposition 4.1. 

PROPOSITION 4.1. In a Fuzzy ART  architecture, when 
an input pattern I is presented at the F~ layer, a node 
in the Fz layer is chosen according to the following 
rules: 
( a ) A subset node ( i f  there is one) will be chosen over 

an uncommitted node. 
( b ) Among all the subset nodes, the node with the 

largest template will be chosen first. 
(c)  I f  a mixed node j with template Wy is accessed 

prior to a subset node J with template W j, then [I 
^ Wjl > I W~l must hold. 

(d) l f  there are no subset nodes, and for  every mixed 
node j: II A W j l / I w j l  -< o.5, then an uncommit- 
ted node will be chosen over any mixed node. 

Proof. (a)  Assume that Wj is a subset template for the 
input pattern I.  I f  pattern I accesses an uncommitted 
node over the subset node J ,  then 

[Wjl M 
+ Iw~t < -- 'a+2M (24) 

which gives 

aM 
IwjI < -  (25) 

a + M "  

We have proved (in Proposition 3.1 ) that the smallest 
possible template size is larger than [ ( a M ) / ( a  + M)].  
Therefore, eqn (25) will never hold, and consequently 
pattem I will not access an uncommitted node if there 
is at least one subset node. 

(b)  This is a direct result of  the way the choice func- 
tion is defined in Fuzzy ART [ see eqn (3) ] .  

(c)  This is a direct result of  the fact that Tj _> Tj. 
(d) The sufficient condition for an uncommitted 

node to be chosen over a mixed node j is 

II ^ Wjl M 
,~ + IWjl < ot+2M--' (26) 

which can be written as 

tx(M - II ^ Wjl) + M(IWjl  - 21I/x WjI) > 0. (27) 

Because a > 0 and II ^ W~I < M, if II /x wjl / IWjl  
--< 0.5, eqn (27) will hold. Therefore, an uncommitted 
node will be chosen over the mixed node j .  • 

THEOREM 4.1. In a Fuzzy ART  architecture with fast  
learning and repeated presentations of  a list o f  input 
patterns, no uncommitted node will be chosen after the 
first list presentation. As a result, the total number of  
committed nodes ( or templates) cannot exceed the total 
number of  patterns in the input list. 

Proof. Consider a pattern I from the input list during 
list presentation x (x - 2). We know that after the first 
list presentation there is at least one subset node for the 
input pattern I.  In list presentation x (x -> 2),  according 
to Proposition 4.1, pattern I will either choose node J 
with the largest subset template W~ or it will choose a 
node j with a mixed template Wj. Assume that node J 

is chosen first. Let us also assume that input pattern i 
is the last pattern prior to I ' s  presentation that modified 
the template of node J to its current form (i.e., Wj) .  
Obviously, 

TABLE 2 
Consequences of Corollary 3.2 for M = 10 

Range of a 
Size of the MIN of 

Range of p Two Templates 

(30, 8O] 
(40/3, 30] 
(5, 40/3] 
(0, 5] 

(0.8, 0.9] <9 
(0.7, o.8] <8 
(0.6, 0.7] <7 
(0, 0.6] <6 
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IwjI IwjI 
l i~  - M -  > p" (28) 

Knowing that I II = l i l  = M a n d  Wj C I ,  we can 
conclude from eqn (28) that, if node J is chosen first 
by pattern I ,  node J will not be reset. Assume now that 
node j  is chosen first (before node J is chosen). Then, 
according to Proposition 4.1 (c) ,  

11 A Wj] > [WjI. (29) 

Equation (29) in conjunction with eqn (28) ,  and the 

fact that [ I [ = [ i [ = M, imply that if node j is chosen 
first by pattern I ,  node j will not be reset. The above 
discussion proves that uncommitted nodes will not be 
chosen in list presentations -> 2. • 

REMARKS. This theorem provides an upper bound for 
the number of  nodes needed in the F2 layer so that 
Fuzzy ART will learn all the patterns in an input list, 
provided that fast learning is employed. In practice, 
the number of  categories (i.e., the number of  nodes 
needed in the F2 layer) is usually much less than the 
number of  patterns in the input list, and is an increas- 
ing function of the choice parameter a and the vigi- 
lance parameter p. 

THEOREM 4.2 (Direct Access by Perfectly Learned Pat- 
tern). In a Fuzzy A R T  architecture, i f  a node J in the 
F2 layer has perfectly learned an input pattern I (i.e., 
W j = I ) , then when I is presented it will directly access 
node J. 

Proof. When input pattern I is presented, the choice 
function for node J is equal to 

1I/x W~l ]I1 
Tj - (30 )  

+ [W~l ~ +  II1" 

For any other node j ,  the choice function is equal to 

II ^ wjl 
Tj - a + IWj~- - " - [  " (31 )  

Thus, 

(T~ - rj)(,~ + Iwjl)(,~ + I I I )  

= o,(lll - II A Wj[) + [II(IWjl - II/x Wjl). (32) 

Note that both III - I I /x  w j l  and IWjl - I I /x  Wjl 
are greater than or equal to zero and they cannot be 
equal to zero at the same time for Wj * I.  We therefore 
conclude from eqn (32) that Tj > Tj, which guarantees 
that pattern I will choose node J over all the other 
nodes. Node J will not be reset because Wj = I.  Con- 
sequently, in the presence of a node J with template 
Wj = I ,  the input pattern I will directly access node 
J.  • 

PROPOSITION 4.2. In a Fuzzy A R T  architecture with re- 
peated presentations of  a list o f  input patterns, after 

learning is complete, there may exist committed nodes 
in the 172 layer that are not directly accessed by any 
pattern in the input list. 

Proof  (By example) Suppose that the complement- 
coded patterns in the input list are as follows: 

11 = (0.3 0.710.7 0.3) 
12 = (0.7 0.310.3 0.7) 
13 = ( 0 . 2  0.610.8 0.4) 
I 4 = (0.4 0.810.6 0.2) 
15 = (0.6 0.210.4 0.8) 
16 = ( 0 . 8  0.410.2 0.6) 

These patterns are presented repeatedly to Fuzzy ART 
in the order I 1 12 13 i 4 15 16. Assume that p = 0.59,/3 
= 1.0 (fast-learning) and a is small. In the first list 
presentation patterns I 1 and 12 will choose node 1, pat- 
terns 13 and 14 will choose node 2, and patterns 15 and 
16 will choose node 3. Learning will be complete at the 
end of the first list presentation. In the second list pre- 
sentation patterns I 1 and 12 will choose nodes 2 and 3, 
respectively, patterns 13 and I n will choose node 2, and 
patterns 15 and 16 will choose node 3. Thus, after the 
completion of learning, node 1 will not be chosen by 
any pattern in the input list. 

Similar results are obtained in the case of fast-com- 
mit, slow-recode learning ( if  0.9 < / 3  < 1 ) or the reg- 
ular slow learning ( if  0.96 ----- /3 < 1) for the given 
example. The only difference is that it will take more 
than one list presentation to complete the learning pro- 
cess. • 

5. R E S E T  P R O P E R T I E S  

The properties discussed in this section are byproducts 
of  the results mentioned earlier. They are important to 
report though because they provide a different per- 
spective of viewing these results; this perspective in- 
volves the orienting subsystem in Fuzzy ART. For ex- 
ample, Corollary 5.1 states that under certain 
assumptions, no reset events are possible after the first 
presentation of a list of  input patterns, whereas Corol- 
laries 5.2 and 5.3 determine the effective range of the 
vigilance parameter, that is, the range of p values that 
will allow reset events to occur. Corollaries 5.2 and 5.3 
are also useful in helping us to choose appropriate c~ 
and p values for Fuzzy ART simulations. 

COROLLARY 5.1. In a Fuzzy ART  architecture with fast  
learning, and repeated presentations of  a list o f  input 
patterns, no reset will occur after the first list presen- 
tation. 

Proof This is an immediate byproduct of  the proof of 
Theorem 4.1. • 

REMARKS. Corollary 5.1 tells us that with fast learning 
and repeated presentations of a list of  input patterns, 
for list presentations --> 2, there is no need to check on 
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the vigilance criterion. In terms of hardware, the ori- 
enting subsystem becomes inactive (automatically dis- 
engaged) after the first list presentation. In terms of a 
software simulation of  Fuzzy ART, we can disregard 
the orienting subsystem after the first list presentation 
to speed up the learning. 

COROLLARY 5.2. In a Fuzzy A R T  architecture with a 
sufficient number  o f  nodes in the F2 layer, i f  p <-- ( a /  
a + M )  no resets will occur. In the case o f  binary 
patterns and fas t  learning, i f  p <- [ ( a  + 1 )/(c~ + M)]  
no resets will occur. 

Proo f  This is a direct result of  Proposition 3.1 because 
the vigilance parameter should be larger than the small- 
est possible template size divided by M for it to have 
an effect on the operation of the network. • 

REMARKS. The above corollary demonstrates that if a 
is large, small vigilance cannot be effective. For ex- 
ample, if a = M, the vigilance should be larger than 
0.5, because if p --< 0.5, no reset will ever occur. On 
the other hand, given a vigilance parameter p, if t~ _> 
p M / (  1 - p ) ,  no reset will ever occur. Therefore, we 
can always eliminate the orienting subsystem and let 
larger c~ values take care of  the vigilance. Corollary 5.2 
illustrates that the Fuzzy ART parameters a and p 
should be carefully chosen if we want the vigilance 
parameter p to have an effect on the operation of the 
network. 

COROLLARY 5.3. In a Fuzzy A R T  architecture with bi- 
nary patterns, fas t  learning, and a sufficient number  o f  
nodes in the 172 layer, i f  a > M ( M  - L - 1 ) /L  and p 
<- 1 - (L  - 1 ) / M ,  then no resets will occur. The pa- 
rameter L is an integer taking values in the interval [ 2, 
M -  11. 

P r o o f  This corollary is an immediate consequence of 
Corollary 3.1. • 

6. NUMBER OF LIST PRESENTATIONS 

In this section, we assume that a list of  input patterns 
is repeatedly presented to the Fuzzy ART architecture, 
and we derive results related to the number of  list pre- 
sentations required by Fuzzy ART to learn this list. In 
particular, Theorem 6.1 states that if the choice param- 
eter a is relatively small, then learning in Fuzzy ART 
will be completed in one list presentation. Furthermore, 
Propositions 6 .1-6 .4  constitute an effort to find upper 
bounds on the number of  list presentations needed by 
Fuzzy ART to learn the input list when a is relatively 
large (i.e., when c~ is not necessarily as small as it is 
required to validate Theorem 6.1 ). Of  course other as- 
sumptions, besides the range of the a parameter, are 
needed to guarantee the validity of  Theorem 6.1 and 
Propositions 6.1-6.4.  A common assumption for The- 

orem 6.1 and Propositions 6 .1-6 .4  is that the input pat- 
terns are binary. With a slight modification of the as- 
sumptions in Theorem 6.1, we can guarantee its 
validity for analog input patterns (see Remarks after 
the proof of  Theorem 6.1 ). 

It is worth mentioning that Theorem 6.1 in its analog 
version (i.e., without the assumption of  binary input 
pattems) was first presented in Carpenter et al. 
( 1991 b) .  However, Theorem 6.1, by specializing to the 
case of  binary input patterns, gives explicit conditions 
on the values of the parameter ot that guarantee its va- 
lidity. Furthermore, in the remarks, following the proof 
of  Theorem 6.1, we stress the difficulty of imposing 
explicit conditions on the values o f  ot to guarantee the 
validity of  the theorem for the case of analog input 
patterns. In any case, despite the fact that Theorem 6.1 
was first presented elsewhere (Carpenter et al., 1991b) 
its incorporation in this section makes the section more 
complete. 

THEOREM 6.1. In a Fuzzy A R T  architecture with binary 
patterns, fas t  learning, a sufficient number  o f  nodes in 
the F2 layer, and repeated presentations o f  a list o f  
input patterns, i f  a <- p/( 1 - p ), then the weights will 
stabilize in one list presentation. 

Proo f  With fast learning, after the first list presenta- 
tion, every pattern has at least one subset node and no 
pattern will choose an uncommitted node (Proposition 
4.1 ). The weights are stabilized in one list presentation 
if, in list presentations ___ 2, every pattern in the input 
list chooses a subset node over any mixed node. This 
is due to the fact that no resets occur in list presenta- 
tions > 2 (Corollary 5.1 ). The sufficient condition re- 
quired so that a pattern I from the input list chooses a 
subset node J prior to choosing a mixed node j is 

IwjI II ^ wjl 
,~ + IwjI > a - - ' +  Iwjl (33) 

which implies that 

IwA(IWjl - II ^ wj[) + ,~(IWA - II ^ wjl) > 0. (34) 

Because any template satisfies 

p g  <-- [Wj[ --< M (35) 

and in the case of  binary input patterns and fast learning 

II ^ WjF -< tWjl - 1 -< M - 1, (36) 

the left-hand side of inequality (34) is larger than or 
equal to 

pM + ot(pM - M + 1). (37) 

Consequently, eqn (34) is satisfied if a ----- p / (  1 - p) .  
Concluding, in list presentations -> 2, if a -< p / (  1 - 

p), every pattern in the input list will directly access 
its subset node with the largest template size. Hence, 
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no weight changes will occur in list presentations -> 2 
and equivalently the weights are stabilized in one list 
presentation. • 

REMARKS. ( 1 ) In the extreme case where p = 1, each 
pattern from the input list will choose a different node 
in the F2 layer. In this case, for any value o f  a the 
weights will stabilize in one list presentation (see also 
Proposition 6.1 for stronger results). (2 )  By Corollary 
3.1, for binary input patterns and fast learning, the 
smallest possible template size is greater than or equal 
to 2, and as a result the vigilance parameter p should 
be larger than 2 / M .  Therefore, if p <-- 2 / M  (including 
zero) ,  Theorem 6.1 is valid for a <- 2 / ( M  - 2).  (3)  
A sufficient condition on the ct values that will guar- 
antee the validity of  Theorem 6.1, even when the input 
patterns are analog, is 

< p(IW, I - II ^ w j l )  (38)  
1 - p  

Unfortunately, even if  we know the exact p value, we 
cannot find a lower bound for the right-hand side of  
eqn (38)  because IWjl - [I A Wjl can be arbitrarily 
small in the analog case. In conclusion, we can only 
state that Theorem 6.1 is valid for analog input patterns 
if a is chosen very small. 

Before we present other results, let us state a lemma. 
The proof  o f  the lemma is easy and therefore omitted. 

LEMMA 6.1. In a Fuzzy A R T  architecture with binary 
patterns, fas t  learning, and repeated presentations o f  a 
list o f  input patterns, i f  [Wl is the minimum template 
size at the end o f  the first list presentation, then the 
fol lowing rules are valid in list presentations >- 2: 
( 1 ) No  template o f  size [W I or smaller can be cre- 

ated. 
(2)  A template o f  size IWl o r  IWl ÷ 1 cannot be 

modified. 
(3)  A template o f s i ze  [WI + L (L --> 2)  can be mod- 

ified only by patterns f o r  which the largest subset 
template is o f  size H <- I Wl  + L - 2. And  the 
new template size should be greater than or equal 
t o l l +  1. 

PROPOSITION 6.1. In a Fuzzy A R T  architecture with bi- 
nary patterns, fas t  learning, a sufficient number  o f  
nodes in the F2 layer, and repeated presentations o f  a 
list o f  input patterns, i f  a > ½M(M - 3 ) o r  p > 1 - 
2 / M ,  then the weights will be stabilized in one list pre- 
sentation. 

Proo f  I f a  > ½M(M - 3),  by Corollary 3.1, the small- 
est possible template size is equal to M - 1. Similarly, 
if/9 > 1 - 2 / M ,  the smallest template size is equal to 
M - 1. In either case, we have at most  two different 
sizes of  the templates: size M and size M - 1. By 
I_emma 6.1, no template can be changed after the first 

list presentation. Therefore, the weights are stabilized 
in one list presentation. • 

REMARKS. If  a > M ( M  - 2),  the smallest possible tem- 
plate size is M (Corollary 3.1 ). As a result, each distinct 
pattern will choose a different node in the F2 layer during 
the first list presentation, and no reset will occur no mat- 
ter what the value of  p is. In this case, Fuzzy ART pro- 
vides a fast way of  distinguishing patterns. 

PROPOSITION 6.2. In a Fuzzy A R T  architecture with bi- 
nary patterns, fas t  learning, a sufficient number  o f  
nodes in the F2 layer, and repeated presentations o f  a 

l M ( M  - l i s t  o f  input patterns, i f  ½M(M - 4) < t~ ----- 
3) or 1 - 3 / M  < p <-- 1 - 2 / M ,  then the weights will 
stabilize in at most two list presentations. 

Proo f  If  ½ M ( M  - 4) < c~ --< ½M(M - 3),  or 1 - 3/ 
M < p <- 1 - 2 / M ,  then there are at most three dif- 
ferent sizes o f  templates: size M, size M - 1, and size 
M - 2. By Proposition 4.1, no new template of  size M 
will be created after the first list presentation. By 
Lemma 6.1, the templates o f  size M - 2 or M - 1 
cannot be changed after the first list presentation. These 
observations allow us to state that templates of  size M 
cannot be modified after the second list presentation. 
In review, no templates are modified and no new tem- 
plates are created after the second list presentation, or 
equivalently, the weights are stabilized within the first 
two list presentations. • 

PROPOSITION 6.3. In a Fuzzy A R T  architecture with bi- 
nary patterns, fast  learning, a sufficient number  o f  
nodes in the Fz layer, and repeated presentations o f  a 
list o f  input patterns, i f ¼ M ( M -  5) < ~ --- ½ M ( M -  
4)  or 1 - 4 / M  < p <-- 1 - 3 / M ,  then the weights will 
be stabilized in at most  three list presentations. 

Proo f  If  ¼M(M - 5) < a <-- ½M(M - 4),  or 1 - 4 /  
M < p <-- 1 - 3 / M ,  then by Corollary 3.1, there are 
at most  four different sizes o f  the templates, that is, 
sizes M,  M - 1, M - 2, and M - 3. When the smallest 
template size is M - 3, both a <-- ½M(M - 4) and p 
<-- 1 - 3 / M  have to be true. By Proposition 3.2, for 
any two templates W1 and W2, ]WI /x Wz[ -< M - 3 
for M --> 4. Based on Theorem 4.1 we can also claim 
that in list presentations -> 2 templates o f  size M cannot 
be created. 

Proposi t ion  6.3 will be proven in two steps. In 
Step 1 we will prove that in list presentat ions -> 3, 
templates  o f  size M cannot  be destroyed.  In Step 2 
we will prove that in list presentat ions --> 4, templates 
o f  size M - 1 cannot  be destroyed.  The combina t ion  
o f  the two steps in conjunct ion  with L e m m a  6.1 
prove Proposi t ion 6.3. For  the p roof  o f  Step 1 we 
dist inguish cases. 

Case 1. At the beginning of  the second list presen- 
tation a pattern I has a subset template of  size M, de- 
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noted by W 1 . This template, in list presentations -> 2, 
might be reduced in size to a template of size M - 1 
or M - 2. Independently of what happens to Wt pattern 
I cannot, in list presentations _> 2, destroy another tem- 
plate W 2 of size M. This is because ]Wt A W2l --< M 
- 3 and consequently II /x W21 = I W~ ^ W21 --< 
M - 3 .  

Case 2. At the beginning of the second list presen- 
tation a pattern I has a subset template of size M - 1, 
denoted by W~. This template, in list presentations _> 
2, might be reduced in size to a template of size M - 
2. Independently of what happens to W~ pattern I can- 
not, in list presentations -> 2, destroy another template 
W2 of size M. This is because ] Wi /x W2I -< M - 3, 
which means that pattern I can have at most M - 2 
common ones with W2. 

Case 3(a) .  At the beginning of the second list pre- 
sentation a pattern I has a subset template Wl of size 
M - 2. Furthermore, during I ' s  presentation in the sec- 
ond list, I chooses node 1 with template W~ over all 
other nodes with templates of size M. It is obvious then 
that pattern I in list presentations _> 3 will always 
choose template Wt over all other templates of size M 
(note that in list presentations > 2 template W, cannot 
be destroyed and new templates of size M cannot be 
created). 

Case 3(b) .  At the beginning of the second list pre- 
sentation a pattern I has a subset template WI of  size 
M - 2. Furthermore, during I ' s  presentation in the sec- 
ond list, pattern I destroys a template W2 of size M and 
thus it creates a template of size M - 1. Following 
similar arguments as the ones for Case 2, we can prove 
that pattern I,  in list presentations ___ 3, cannot destroy 
another template of  size M. 

Case 4(a) .  At the beginning of the second list pre- 
sentation a pattern I has a subset template Wl of size 
M - 3. Furthermore, during I ' s  presentation in the sec- 
ond list, pattern I chooses node 1 with template W] over 
all other nodes with templates of  size M. For similar 

reasons as the ones mentioned in Case 3(a) ,  pattern l 
in list presentations _> 3 cannot destroy templates of 
size M. 

Case 4 (b) .  At the beginning of the second list pre- 
sentation a pattern I has a subset template Wl of size 
M - 3. Furthermore, during I ' s  presentation in the sec- 
ond list pattern I destroys a template W2 of size M and 
thus creates (i) a template of size M - 1 or (ii) a 
template of size M - 2. Scenario (i) can be treated in 
a similar fashion as Case 2 to prove that in list pre- 
sentations _ 3, pattern ! cannot destroy another tem- 
plate W3 of size M. If  scenario (ii) occurs, we know 
that in list presentations _ 3, pattern I can destroy tem- 
plate W3 of size M only if it were possible to create a 
template of size M - 1; but if this can happen in a list 
presentation _> 3, it should have also happened in the 
second list presentation. This is a contradiction because 
we are operating under scenario (ii). Hence, under sce- 
nario (ii), pattern I in list presentations _ 3 cannot 
destroy templates of size M. 

Cases 1 through 4 cover all possible scenarios, and 
prove the validity of Step 1. Due to Step 1 we can claim 
that in list presentations _> 3, templates of  size M - 1 
cannot be created. Consequently, Step 2 can now be 
proved in the same manner that Proposition 6.2 was 
proved. The combination of Lemma 6.1, Step 1, and 
Step 2 guarantees that the weights will stabilize in at 
most three list presentations. • 

PROPOSITION 6.4. In a Fuzzy  A R T  archi tecture with 
binary patterns,  fas t  learning, a sufficient number  o f  
nodes  in the F2 layer, cyclic presenta t ions  o f  a list o f  
input patterns,  and  M >- 9, i f  ½ M ( M  - 6) < ct ----- 
¼ M ( M  - 5),  or 1 - 5 / M  < p <-- 1 - 4 / M ,  then the 
weights  will  stabilize in at mos t  f o u r  list presenta-  
tions. 

Diseussion of  the proof. The proof of this proposition 
is complicated. Its complication arises from the fact 
that the number of cases that needs to be examined to 

TABLE 3a 
Summary of the Results in Theorem 6,1 and Propositions 6,1-6.4 for an Arbitrary M 

Number of Number of 
Range of cz Range of p Template Sizes Lists Needed 

oe E ( ½ M ( M  - 3), oo) or 

oL E ( ½ M ( M  - 4), ~ M ( M  - 3)] or 

o~ E ( ~ M ( M  - 5), ~ M ( M  - 4)] or 

o~ E ( ~ M ( M  - 6), ¼ M ( M  - 5)] or 

p E ( 0 , 1 ]  . < M - 1  1 

p E  1 - ~ , 1  --<2 1 

p E~ 1 - ~ , 1  - -<3 -<2 

p •  1 - ~ , 1 -  ---4 -<3 

PC 1 - ~ , 1  - -<5 -----4 
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T A B L E  3b 
Summary of the Results in Theorem 6.1 and Propositions 6.1-6.4 for the Special Case o f  M = 10 

Number of Number of 
Range of a Range of p Template Sizes Lists Needed 

( P 0 .25 ) ]  and p E (0 ,1 ]  -<9 1 a E ( 0 ,  m a x \ l - p '  
/ - I  

a ~ (35, oo) or p E (0.8 1] <-2 1 
a E (20, 35] or p c (0.7, 0.8] <-3 <-2 
a E (12.5, 20] or p E (0.6, 0.7] -<4 --<3 
a ~ (8, 12.5] or p E (0.5, 0.6] -<5 --<4 

guarantee its validity is much larger than the number  
of  cases investigated in the proof  of  Proposition 6.3. 
Here we only provide a sketch o f  the proof. 

1 M ( M  -- 5 ) ,  or  1 --  5 / M  < If  ~ M ( M -  6) < a --< 
p <- 1 - 4 / M ,  then there are at most  five different sizes 
of  the templates: M, M - 1, M - 2, M - 3, and M - 
4. When the smallest template size is M - 4, both a -< 
¼ M ( M  - 5) and p --< 1 - 4 / M  have to be true. By 
Proposition 3.2, for any two templates W~ and W: ,  [Wj 
A W21 -< M - 4 for M --> 9. We can prove Proposition 
6.4 in two steps. In Step 1, we prove that no templates 
of  size M - 1 can be created in list presentations --> 3, 
and if a template o f  size M is modified in the third list, 
then the new template size must be M - 2. In Step 2 
we prove that no templates o f  size M - 1 or M can be 
modified in list presentations -> 4, and as a result, no 
templates o f  size M - 2 can be created in list presen- 
tations -> 4. 

Steps 1 and 2, in conjunction with Theorem 4.1, 
prove that new templates cannot be created and old 
templates cannot be modified in list presentations -> 5. 
That is, the weights are stabilized i n  four list presen- 
tations. 

REMARKS. Proposition 6.4 covers only the cases where 
M --> 9, which ensures IW~ A W2I -< M - 4 (obtained 
from Proposition 3.2). I f  M ~ 8 and p > 0.5, the 
weights will be stabilized in at most  three list presen- 
tations (see Propositions 6 . 1 - 6 . 3 ) .  Hence, Proposi- 
tions 6 .1 -6 .3  cover most  of  the practical cases when 
M < 8 .  

In Table 3 we present a summary of  our findings as 
they are predicted by Theorem 6.1 and Propositions 
6 .2 -6 .4 .  We depict the results for arbitrary M and for 
M = 10. It is easy to see f rom Table 3 that for small 
M values, Theorem 6.1 and Propositions 6 .1 -6 .4  cover 
all the practical cases o f  interest regarding the number  
o f  list presentations needed by Fuzzy ART  to learn a 
list o f  binary patterns that is repeatedly presented to it. 
Furthermore, by looking at the results o f  Table 3, we 
are encouraged to believe that there is a pattern relating 
the range of  a or p values, and the number  o f  list pre- 
sentations needed to learn an arbitrary binary list re- 
peatedly presented to Fuzzy ART. Hence, we were 

tempted to formulate a conjecture that extends the re- 
sults o f  Table 3 over the entire range o f  c~ and p values. 
We decided not to do so because o f  the additional as- 
sumptions needed to verify the validity o f  Proposition 
6.4 (i.e., cyclic presentations o f  the input list, and M >- 
9) .  Nevertheless, it is worth mentioning that out o f  
hundreds o f  simulations performed with random input 
patterns, we found that the maximum number of  list 
presentations needed for weight stabilization in Fuzzy 
ART was three for two of  the simulations, and two for 
the rest o f  the simulations. 

7.  S U M M A R Y  

We have examined the Fuzzy ART algorithm carefully 
f rom a number  of  different perspectives. For example, 
in Section 3 we demonstrated that Fuzzy ART tem- 
plates are distinct, we calculated a lower bound on the 
template size, and we found an upper bound on the 
similarity of  the templates created. Furthermore, in 
Section 4 we focused on access properties, investigat- 
ing the order of  search of  the F2 layer nodes, finding 
an upper bound on the number of  nodes needed in the 
F2 layer of  Fuzzy ART to learn an arbitrary list of  input 
patterns, and proving the direct access property of  pat- 
terns to perfectly learned templates. Also, in Section 5 
we concentrated on the orienting subsystem and reset 
events, and elaborated on the interrelationship between 
the c~ and p parameter values needed in Fuzzy ART 
simulations. Finally, in Section 6 we shifted our atten- 
tion to the number of  list presentations required by 
Fuzzy ART to learn an arbitrary list of  patterns re- 
peatedly presented to it. Most o f  the results presented 
in Section 6 were valid for binary input patterns and 
fast learning. The strongest result proven in Section 6 
stated that for small a values [i.e., ~ --< p / ( l  - p) ] ,  
learning will be complete in one list presentation. 
Weaker  results were also presented in Section 6, where, 
to come up with a definite upper bound on the number 
of  list presentations needed, we restricted either the c~ 
range or the p range. 
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